The SGLT2 inhibitor empagliflozin ameliorates early features of diabetic nephropathy in BTBR ob/ob type 2 diabetic mice with and without hypertension.

نویسندگان

  • Florian Gembardt
  • Christoph Bartaun
  • Natalia Jarzebska
  • Eric Mayoux
  • Vladimir T Todorov
  • Bernd Hohenstein
  • Christian Hugo
چکیده

Diabetic nephropathy is the leading cause of end-stage renal disease in humans in the Western world. The recent development of Na+-glucose cotransporter 2 (SGLT2) inhibitors offers a new antidiabetic therapy via enhanced glucose excretion. Whether this strategy exerts beneficial effects on the development of type 2 diabetic nephropathy is still largely unclear. We investigated the effects of the specific SGLT2 inhibitor empagliflozin in BTBR.Cg-Lep/WiscJ (BTBR ob/ob) mice, which spontaneously develop type 2 diabetic nephropathy. In the first experiment, BTBR ob/ob mice received either a diet containing 300 ppm empagliflozin or equicaloric placebo chow for 12 wk. In the second experiment, BTBR ob/ob mice received 1 μg·kg body wt(-1)·day(-1) ANG II to induce arterial hypertension and were separated into the same two diet groups for 6 wk. In both experiments, empagliflozin treatment enhanced glucosuria, thereby lowering blood glucose. Independently of hypertension, empagliflozin reduced albuminuria in diabetic mice. However, empagliflozin treatment affected diabetes-related glomerular hypertrophy, markers of renal inflammation, and mesangial matrix expansion only in BTBR ob/ob mice without hypertension. In summary, empagliflozin demonstrated significant antihyperglycemic effects, differentially ameliorating early features of diabetic nephropathy in BTBR ob/ob mice with and without hypertension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BTBR Ob/Ob mutant mice model progressive diabetic nephropathy.

There remains a need for robust mouse models of diabetic nephropathy (DN) that mimic key features of advanced human DN. The recently developed mouse strain BTBR with the ob/ob leptin-deficiency mutation develops severe type 2 diabetes, hypercholesterolemia, elevated triglycerides, and insulin resistance, but the renal phenotype has not been characterized. Here, we show that these obese, diabeti...

متن کامل

Carnosine Attenuates the Development of both Type 2 Diabetes and Diabetic Nephropathy in BTBR ob/ob Mice

We previously demonstrated that polymorphisms in the carnosinase-1 gene (CNDP1) determine the risk of nephropathy in type 2 diabetic patients. Carnosine, the substrate of the enzyme encoded by this gene, is considered renoprotective and could possibly be used to treat diabetic nephropathy (DN). In this study, we examined the effect of carnosine treatment in vivo in BTBR (Black and Tan, BRachyur...

متن کامل

An Update on the Use of Animal Models in Diabetic Nephropathy Research

In the current review, we discuss limitations and recent advances in animal models of diabetic nephropathy (DN). As in human disease, genetic factors may determine disease severity with the murine FVB and DBA/2J strains being more susceptible to DN than C57BL/6J mice. On the black and tan, brachyuric (BTBR) background, leptin deficient (ob/ob) mice develop many of the pathological features of h...

متن کامل

Lithium reduces blood glucose levels, but aggravates albuminuria in BTBR-ob/ob mice

Glycogen synthase kinase 3 (GSK3) plays an important role in the development of diabetes mellitus and renal injury. GSK3 inhibition increases glucose uptake in insulin-insensitive muscle and adipose tissue, while it reduces albuminuria and glomerulosclerosis in acute kidney injury. The effect of chronic GSK3 inhibition in diabetic nephropathy is not known. We tested the effect of lithium, the o...

متن کامل

Inhibition of Kidney Proximal Tubular Glucose Reabsorption Does Not Prevent against Diabetic Nephropathy in Type 1 Diabetic eNOS Knockout Mice

BACKGROUND AND OBJECTIVE Sodium glucose cotransporter 2 (SGLT2) is the main luminal glucose transporter in the kidney. SGLT2 inhibition results in glycosuria and improved glycaemic control. Drugs inhibiting this transporter have recently been approved for clinical use and have been suggested to have potential renoprotective benefits by limiting glycotoxicity in the proximal tubule. We aimed to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 307 3  شماره 

صفحات  -

تاریخ انتشار 2014